Methodological Review

Extracting interactions between proteins from the literature

Deyu Zhou *, Yulan He

Informatics Research Centre, The University of Reading, Reading, RG6 6BX, UK

Received 13 March 2007

Abstract

During the last decade, biomedicine has witnessed a tremendous development. Large amounts of experimental and computational biomedical data have been generated along with new discoveries, which are accompanied by an exponential increase in the number of biomedical publications describing these discoveries. In the meantime, there has been a great interest with scientific communities in text mining tools to find knowledge such as protein–protein interactions, which is most relevant and useful for specific analysis tasks. This paper provides a outline of the various information extraction methods in biomedical domain, especially for discovery of protein–protein interactions. It surveys methodologies involved in plain texts analyzing and processing, categorizes current work in biomedical information extraction, and provides examples of these methods. Challenges in the field are also presented and possible solutions are discussed.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Information extraction; Biomedicine; Computational linguistics; Machine learning; Text mining; Protein–protein interactions

1. Introduction

In post genomic science, proteins are recognized as elements in complex protein interaction networks. Hence protein–protein interactions play a key role in various aspects of the structural and functional organization of the cell. Knowledge about them unveils the molecular mechanisms of biological processes. However, most of this knowledge hides in published articles, scientific journals, books and technical reports. To date, more than 16 million citations of such articles are available in the MEDLINE database [1]. In parallel with these plain text information sources, many databases, such as DIP [2], BIND [3], IntAct [4] and STRING [5], have been built to store various types of information about protein–protein interactions. Nevertheless, data in these databases were mainly hand-curated to ensure their correctness and thus limited the speed in transferring textual information into searchable structure data. Retrieving and mining such information from the literature is very complex due to the lack of formal structure in the natural-language narrative in these documents. Thus, automatically extracting information from biomedical text holds the promise of easily discovering large amounts of biological knowledge in computer-accessible forms.

Many systems [6–10], such as EDGAR [11], BioRAT [12], GeneWays [13] and so on, have been developed to accomplish this goal, but with limited success. Table 1 lists some popular online databases, systems, and tools relating to the extraction of protein–protein interactions.

In general, to automatically extract protein–protein interactions, a system needs to consist of three to four major modules[13,14], which is illustrated in Fig. 1.

- Zoning module. It splits documents into basic building blocks for later analysis. Typical building blocks are phrases, sentences, and paragraphs. In special cases, higher-level building blocks such as sections or chapters may be chosen. Ding et al. [15] compared the results of employing different text units such as phrases, sentences, and abstracts from MEDLINE to mine interactions between biochemical entities based on co-occurrences. Experimental results showed that abstracts, sentences,
Table 1
Online databases, systems, tools relating to the extraction of protein–protein interactions

<table>
<thead>
<tr>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online databases storing protein–protein interactions</td>
<td></td>
</tr>
<tr>
<td>BIND</td>
<td>Biomolecular Interaction Network Database contains over 200,000 human-curated interactions.</td>
</tr>
<tr>
<td>DIP</td>
<td>Database of Interacting Proteins catalogs experimentally determined interactions between proteins. Until now, it contains 36,186 interactions, combining information from various sources to construct a single, stable set of protein–protein interactions.</td>
</tr>
<tr>
<td>HPRD</td>
<td>Human Protein Reference Database [21] contains interaction networks for each protein in the human proteome. All the information in HPRD has been manually extracted from the literature by expert biologists who read, interpret and analyze the published articles</td>
</tr>
<tr>
<td>HPID</td>
<td>Human Protein Interaction Database integrates the protein interactions in BIND, DIP and HPRD</td>
</tr>
<tr>
<td>IntAct</td>
<td>IntAct consists of an open source database and several analysis tools for protein interaction data. It now contains more than 150,000 curated binary molecular interactions</td>
</tr>
<tr>
<td>MINT</td>
<td>Molecular INTeraction database [22] is a database storing interactions between biological molecules. It focuses on experimentally verified protein interactions with special emphasis on proteomes from mammalian organisms</td>
</tr>
<tr>
<td>STRING</td>
<td>STRING, a database consisting of known and predicted protein–protein interactions, quantitatively integrates interaction data from several sources for a large number of organisms. It currently contains 1,513,782 proteins in 373 species</td>
</tr>
<tr>
<td>Online protein–protein interaction information extraction systems</td>
<td></td>
</tr>
<tr>
<td>BioRAT</td>
<td>BioRAT is a search engine and information extraction tool for biological research</td>
</tr>
<tr>
<td>GeneWays</td>
<td>GeneWays is a system for automatically extracting, analyzing, visualizing and integrating molecular pathway data from the literature. It focuses on interactions between molecular substances and actions, providing a graphical consensus view on these collected information</td>
</tr>
<tr>
<td>MedScan</td>
<td>MedScan is a commercial system based on natural language processing technology for automatic extraction of biological facts from scientific literature such as MEDLINE abstracts, and internal text documents</td>
</tr>
<tr>
<td>Online tools for biomedical literature mining</td>
<td></td>
</tr>
<tr>
<td>CBioC</td>
<td>Collaborative Bio Curation [23] uses automatic text extraction as a starting point to initialize the interaction database. After that, researchers in biomedical domain contribute to the curation process by subsequent edits</td>
</tr>
<tr>
<td>Chilibot</td>
<td>Chilibot [24] is a search software for MEDLINE literature database to rapidly identify relationships between genes, proteins, or any keywords that the user might be interested</td>
</tr>
<tr>
<td>GoPubMed</td>
<td>GoPubMed [25] is a search engine that allows users to explore PubMed search results with the Gene Ontology (GO), a hierarchically structured vocabulary for molecular biology</td>
</tr>
<tr>
<td>iHOP</td>
<td>Information Hyperlinked over Proteins [26] constructs a gene network by converting the information in MEDLINE into one navigable resource using genes and proteins as hyperlinks between sentences and abstracts</td>
</tr>
<tr>
<td>iProLINK</td>
<td>iProLINK is a resource to facilitate text mining in the area of literature-based database curation, named entity recognition, and protein ontology development. It can be utilized by computational and biomedical researchers to explore the literature information on proteins and their features or properties</td>
</tr>
<tr>
<td>PreBIND</td>
<td>PreBIND is a tool helping researchers locate biomolecular interaction information in the scientific literature. It identifies papers describing interactions using a support vector machine</td>
</tr>
<tr>
<td>PubGene</td>
<td>PubGene is constructed to identify the relationships between genes and proteins, diseases, cell processes, and so on based on their co-occurrences in the abstracts of scientific papers, their sequence homology, and statistical probability of their co-occurrences</td>
</tr>
<tr>
<td>Whatizit</td>
<td>Whatizit is a text processing tool that can identify molecular biology terms and linking them to publicly available databases. Identified terms are wrapped with XML tags that carry additional information, such as the primary keys to the databases where all the relevant information is kept. It is also a MEDLINE abstracts search engine</td>
</tr>
</tbody>
</table>

and phases all can produce comparative extraction results. However, with respect to effectiveness, sentences are significantly better than phrases and are about the same as abstracts.

- **Protein name recognition module.** Before the extraction of protein–protein interactions, it is crucial to facilitate the identification of protein names, which still remains a challenging problem [16]. Although experimental results of high recall and precision rates have been reported, several obstacles to further development are encountered while tagging protein names for the conjunctive natural of the names [17]. Chen et al. [18] and Leser et al. [19] provided a quantitative overview of the cause of gene-name ambiguity, and suggested what researchers can do to minimize this problem.

- **Protein–protein interaction extraction module.** As the retrieval of protein–protein interactions has attracted much attention in the field of biomedical information extraction, plenty of approaches have been proposed. The solutions range from simple statistical methods rely-
ing on co-occurrences of genes or proteins to methods employing a deep syntactical or semantical analysis.

- **Visualization module.** This module is not as crucial as the aforementioned three modules, but it provides a friendly interface for users to delve into the generated knowledge [20]. Moreover, it allows users to interact with the system for ease of updating the system’s knowledge base and eventually improve its performance.

To evaluate the performance of an information extraction system, normally recall and precision values are measured. Suppose a test dataset has T positive information (for example, protein–protein interactions), and an information extraction system can extract I “positive” information. In I, only some information is really positive which we denote as B and the remaining information is negative, however the system falsely extracts as positive which we denote as C. In T, some information is not extracted by the system which we denote as A. The relationships of A, B, and C are illustrated in Fig. 2.

Based on the above definitions, recall and precision can be defined as:

\[
\text{Precision} = \frac{||B||}{||B|| + ||C||} \quad (1)
\]

\[
\text{Recall} = \frac{||B||}{||A|| + ||B||} \quad (2)
\]

For example, a test dataset has 10 protein–protein interactions ($||T|| = 10$). An information extracting system extracts 11 protein–protein interactions ($||I|| = 11$). In I, only 6 protein–protein interactions (B) can be found in T, which are considered as true positive (TP). The remaining 5 protein–protein interaction (C) can not be found in T, which are considered as false positive (FP). In T, 4 protein–protein interactions (A) are not extracted by the system, which are considered as false negative (FN). Thus, the recall of the system is $6/(6 + 4) = 60\%$ and the precision is $6/(6 + 5) = 54.5\%$.

Obviously, an ideal information extracting system should fulfill $||A|| \rightarrow 0$, $||C|| \rightarrow 0$. To reflect these two conditions, F-measure is defined by the harmonic (weighted) average of precision and recall [27] as:

\[
F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}} = \frac{(1 + \beta^2)||B||}{(1 + \beta^2)||B|| + \beta^2||A|| + ||C||} \quad (3)
\]

where β indicates a relative weight of precision. For further details of the state of the science in text mining evaluations, please refer to Hersh [28].

In this paper, we focus on the protein–protein interaction extraction module and provide a brief survey and classification on the developed methodologies. In general, the methods proposed so far rely on the techniques from one or more areas [29–32] including Information Retrieval (IR) [27,33], Machine Learning (ML) [34,35], Natural Language Processing (NLP) [36–38], Information Extraction (IE) [39–42] and Text Mining [43–48]. Earlier work focused on limited linguistic context and relied on word co-occurrences and pattern matching. Later computational linguistic techniques that could handle relations in complex sentences were employed. The surveyed work illustrates the progress of the field and shows the increasing complexity of the proposed methodologies.

The rest of the paper is organized as follows. The next section presents a survey of various methods applied in automatical extraction of protein–protein interactions from the literature. In succession, challenges are identified and possible solutions are suggested.

2. Methodologies

This section presents a brief discussion on the existing techniques and methods for extracting protein–protein interactions. In general, current approaches can be divided into three categories:
• **Computational linguistics-based methods.** To discover knowledge from unstructured text, it is natural to employ computational linguistics and philosophy, such as syntactic parsing or semantic parsing to analyze sentence structures. Methods of this category define grammars to describe sentence structures and use parsers to extract syntactic information and internal dependencies within individual sentences. Approaches in this category can be applied to different knowledge domains after being carefully tuned to the specific problems. But, there is still no guarantee that the performance in the field of biomedicine can achieve comparable performance after tuning. Until recently, methods based on computational linguistics still could not generate satisfactory results.

• **Rule-based methods.** Rule-based approaches define a set of rules for possible textual relationships, called patterns, which encode similar structures in expressing relationships. When combined with statistical methods, scoring schemes depending on the occurrences of patterns to describe the confidence of the relationship are normally used. Similar to computational linguistics methods, rule-based approaches can make use of syntactic information to achieve better performance, although it can also work without prior parsing and tagging of the text.

• **Machine learning and statistical methods.** Machine learning refers to the ability of a machine to learn from experience to extract knowledge from data corpora. As opposed to the aforementioned two categories that need laborious effort to define a set of rules or grammars, machine learning techniques are able to extract protein–protein interaction patterns without human intervention. Statistical approaches are based on word occurrences in a large text corpus. Significant features or patterns are detected and used to classify the abstracts or sentences containing protein–protein interactions, and characterize the corresponding relations among genes or proteins.

It has to be mentioned that many existing systems in fact adopt a hybrid approach for better performance by combining methods from two or more of the aforementioned categories.

Fig. 3 illustrates the process of information extraction on an example sentence by employing the typical methods in the above three categories.

2.1. **Computational linguistics-based methods**

In general, computational linguistics-based methods employ linguistic technology to grasp syntactic structures or semantic meanings from sentences.

Techniques for analyzing a sentence and determining its structure in computational linguistics are called parsing techniques. Parsing the corpus firstly to obtain the morphological and syntactic information for each sentence is extremely important, and probably only after that, it would be possible to fulfill sophisticated tasks such as identifying the relationship between proteins and gene products in a fully automatic way. However, it is well-known that parsing unrestricted texts, such as those in the biomedical domain, is extremely difficult.

Fig. 3. General dataflow of information extraction system employing different methodologies.

Please cite this article in press as: Zhou D, He Y, Extracting interactions between proteins from the literature, J Biomed Inform (2008), doi:10.1016/j.jbi.2007.11.008
The methods in this category can be further divided into two types, based on the complexity of the linguistics methods, as shallow (or partial) parsing or deep (or full) parsing. Shallow parsing techniques aim to recover syntactic information efficiently and reliably from unrestricted text, by sacrificing completeness and depth of analysis, while deep parsing techniques analyze the entire sentence structure, which normally achieve better performance but with increased computational complexity.

2.1.1. Shallow parsing approaches

Shallow parsers [49–53] perform partial decomposition of a sentence structure. They first break sentences into non-overlapping chunks, then extract local dependencies among chunks without reconstructing the structure of an entire sentence. Sekimizu et al. used shallow parser, EngCG, to generate three kinds of tags, such as syntactic, morphological, and boundary tags [49]. Based on the tagging results, subjects and objects were recognized for the most frequently used verbs in a collection of abstracts which were believed to express the interactions between proteins, genes. Thomas et al. [51] modified a preexisting parser based on the cascaded finite state automata (FSA). Predefined templates were then filled with information about protein interactions based on the parsing results for three verbs: interact with, associate with, bind to. Pustejovsky et al. [52] targeted “inhibit” relations in the text and also built an FSA to recognize these relations. Leroy et al. [53] used a shallow parser to automatically capture the relationships between noun phrases in free text. The shallow parser is based on four FSAs to structure the relations between noun phrases only, such as the example 1) shown in Fig. 4b-1. The complex pattern contains nominalizations (turning a verb or an adjective into a noun), such as the example 2) shown in Fig. 4b-2.

The FSA dealing with the preposition “by” (BY-FSA) can stand alone or can be cascaded with the OF-FSA. When on its own, the FSA requires the presence of a verb and two noun phrase or nominalizations, such as the example shown in Fig. 4c.

The FSA dealing with the preposition “in” (IN-FSA) can stand alone when there is a verb available, or it can be combined with the OF- or BY-FSA. The structure of the IN-FSA and an example is given in Fig. 4d.

When the parser reaches an end state successfully, the original relation is extracted to fill in the parser relation template which contains up to five elements, such as relation negation, left-hand side elements, connector modifier, connector, and right-hand side elements. For example, the relation extracted from the abstract title “Regulation of E2F1 activity by acetylation”, is “acetylation (left-hand side elements), regulates (connector), E2F1 (right-hand side elements)”.

Obviously, shallow parsers perform well for capturing relatively simple binary relationships between entities in a sentence, but fail to recognize more complex relationships expressed in various coordinating and relational clauses. For sentences containing complex relations between three or more entities, such approaches usually yield erroneous results. Approaches based on full-sentence parsing tend to be more precise.

2.1.2. Deep parsing approaches

Systems based on deep parsing deal with the structure of an entire sentence and therefore are potentially more accurate. Variations of the deep parsing-based approaches have been proposed [10,54–63]. Based on the way of constructing grammars, deep parsing-based approaches can be divided into two types: rationalist methods and empiricist methods. Rational methods define grammars by manual efforts, while empiricist methods automatically generate the grammar by some observations.

2.1.2.1. Rationalist methods. Yakushiji et al. [57] used a general full parser with grammar for biomedical domain to extract interaction events by filling sentences into slots of semantic frames. Information extraction itself is done using pattern matching on the canonical structure. Park et al. [56] proposed bidirectional incremental parsing with combinatory categorial grammar (CCG). This method first localized target verbs, and then scanned the left and right neighborhood of the verb respectively. The lexical and grammatical rules of CCG are more complicated than those of a general context-free grammar (CFG)\footnote{In linguistics and computer science, a CFG is a formal grammar in which every production rule is of the form $V \rightarrow w$ where V is a non-terminal symbol and w is a string consisting of terminals and/or non-terminals. The term “context-free” comes from the fact that the non-terminal V can always be replaced by w, regardless of the context in which it occurs. Context-free grammars are powerful to describe the structure of sentences, and also simple enough to allow the construction of efficient parsing.}. The recall and precision rate of the system were reported to be 48%.
and 80%. Temkin and Gilder [60] introduced a lexical analyzer and a CFG to extract protein, gene and small molecule interactions with a recall rate of 63.9% and precision rate of 70.2%. Ding et al. [61] investigated link grammar parsing for extracting biochemical interactions. It can handle many syntactic structures and is computationally rela-

Please cite this article in press as: Zhou D, He Y, Extracting interactions between proteins from the literature, J Biomed Inform (2008), doi:10.1016/j.jbi.2007.11.008
tively efficient. A better overall performance was achieved compared to those biomedical term co-occurrence based methods. Ahmed et al. [10] split complex sentences into simple clausal structures made up of syntactic roles based on a link grammar. Complete interactions were then extracted by analyzing the matching contents of syntactic roles and their linguistically significant combinations. In GENIES [58], a parser and a semantic grammar consisting of a large set of nested semantic patterns (incorporating some syntactic knowledge) are used. Unlike other systems, GENIES is capable of extracting a wide variety of different relations between biological molecules as well as nested chains of relations. However, the downside of the semantic grammar-based systems such as GENIES is that they may require complete redesign of the grammar in order to be tuned for used in different domain.

2.1.2.2. An example. The process of using deep parsing based on rationalist methods to detect protein–protein interactions can be illustrated by the method proposed in [60], which employs a predefined context-free grammar (CFG).

To develop a concise set of grammar production of rules allowing for the detection of protein, gene, and small molecule (PGSM) interactions, a large corpus of 500 non-topic specific scientific abstracts pulled from PubMed [1] containing various representations of interaction data in unstructured text is manually analyzed. Biochemists read and highlighted the abstracts for relevant sentences describing interactions that were then used to derive the production rules. Fig. 5 shows the parsing process using the defined CFG.

2.1.2.3. Empiricist methods. Many empiricist methods [59,62] have been proposed to automatically generate the language model to mimic the features of unstructured sentences. For example, Seymore et al. [54] used Hidden Markov Model (HMM) for extracting important fields from the headers of computer science research papers. Following the trend, Ray and Craven [55] applied HMM to the biomedical domain to describe the structure of sentences. Skounakis et al. [64] proposed an approach that is based on hierarchical HMMs to represent the grammatical structure

<table>
<thead>
<tr>
<th>Tags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC</td>
<td>End-of-sentence</td>
</tr>
<tr>
<td>MOL</td>
<td>Entity names with their associated abbreviated names</td>
</tr>
<tr>
<td>MOL_LONG</td>
<td>Entity name with long form</td>
</tr>
<tr>
<td>MOL_SHORT</td>
<td>Entity name with abbreviated form</td>
</tr>
<tr>
<td>NEGATOR</td>
<td>Words negating sentences</td>
</tr>
<tr>
<td>KEY</td>
<td>Words for interactions</td>
</tr>
</tbody>
</table>

CFG rules

1. $S \rightarrow$ Interactions
2. Interactions \rightarrow MolExpr Interactions/MolExpr
3. MolExpr \rightarrow Assignment/Relationship
4. Assignment \rightarrow Expr(Negator)? KEY (Relationship_Conj)?Expr (TRANSITIVE KEY Expr)* Eoc
5. Expr \rightarrow EOC
6. ...
10. Expr \rightarrow (Negator)? Molecular ((Negator)?) Molecular*
11. Molecule \rightarrow MOL/MOL_LONG/MOL_SHORT

Fig. 5. A parsing example using CFG.
of the sentences being processed. Firstly, shallow parser to construct a multi-level representation of each sentence being processed was used. Then hierarchical HMMs to capture the regularities of the parses for both positive and negative sentences were trained. In [65], a broad-coverage probabilistic dependency parser was used to identify sentence level syntactic relations between the heads of the chunks. The parser used a hand-written grammar combined with a statistical language model that calculates lexicalized attachment probabilities. Recently, Katrin et al. [66] proposed RelEx based on the dependency parse trees to extract relations in biomedical texts. It was applied on one million MEDLINE abstracts to extract gene and protein relations. About 150,000 relations were extracted with an estimated performance of both 80% precision and 80% recall. Rinaldi et al. [67] also employed a probabilistic dependency parser, Pro3Gres, to output functional dependency structures. Based on these structures, functional relations (e.g. interactions between proteins and genes) were extracted. Experiments were conducted on two different corpora, the GENIA corpus and the ATCR corpus. Precision values range from 52% to 90% and recall values range from 40% to 60% based on different evaluation methods.

2.1.2.4. An example. To show the way of using empiricist deep parsing to extract protein–protein interactions, the method proposed in [66] is used, which employs the Stanford Lexicalized Parser2 to generate dependency parse trees. The parser is based on the unlexicalized probabilistic context-free grammars (PCFGs) [68]. Usually, two data sets are employed to train the parser, one is the standard LDC Penn Treebank WSJ secs 2–21 and the other is an augmented one, better for questions, commands, and text from different genres.

The whole process can be divided into three steps, preprocessing, extracting and postprocessing. In the preprocessing step, a dependency parse tree is generated for each sentence by the Stanford lexicalized parser. Also, gene and protein names are recognized based on a synonym dictionary. Moreover, noun-phase chunks are identified and combined with the dependency parse trees to generate chunk dependency parse trees. Based on the chunk dependency parse trees, paths connecting pairs of proteins are identified in the extracting step based on the three predefined rules. These rules describe the most frequently used constructs for depicting relations, such as effector-relation-effectee (e.g. “IL-4 suppressed IL-2 and IFN-gamma mRNA levels in primary human T cells, and addition of anti-CD28 antibodies relieved this suppression”), relation-of-effectee-by-effector (e.g. “Taken together, these results indicate that IL-6 and IL-8 release by protein I/II-activated FLSs is regulated by FAK independently of Tyr-397 phosphorylation”), and relation-between-effector-and-effectee (e.g. “In human AM, Pc promoted direct interaction of MR

2 http://nlp.stanford.edu/downloads/lex-parser.shtml

and TLR2, IL-8 release was reduced markedly upon...”). Candidate relations are created for each sentence base on these extracted paths. These candidate relations are filtered in the postprocessing step. The filtration consists of negation check (excluding negated relations) and restricting to focus domain (excluding the relations which do not contain any word in a set of predefined relation restriction terms). After filtration, effector and effectee detection and enumeration resolution are performed. For a given sentence, Fig. 6 shows the internal results in each step. It can be observed that this method depends highly on the precision of dependency parse tree generated by the Stanford lexicalized parser.

Full-parsing methods analyze the structure of an entire sentence in order to achieve higher accuracy. However, they still cannot handle all kinds of sentences, especially those with complex structures. Moreover, analyzing the whole sentence structure incurs higher computational and time complexity.

2.2. Rule-based approaches

In rule-based approaches [6,7,9,12,69–77], a set of rules need to be defined which may be expressed in forms of regular expressions over words or part-of-speech (POS) tags. Based on the rules, relations between entities that are relevant to tasks such as proteins, can be recognized.

Ng and Wong [69] defined five rules based on the word form, such as <A>. . . fn. . . in which the symbols A, B refer to protein names while the symbol fn refers to the verb which describes the interaction relationship. Obviously, such rules are too simple to produce satisfactory results. Ono et al. [72] manually defined a set of rules based on syntactic features to preprocess complex sentences, with negation structures considered as well. It achieves good performance with a recall rate of 85% and precision rate of 84% for *Saccharomyces cerevisiae* (yeast) and *Escherichia coli*. Blaschke and Valencia [7] induced a probability score to each predefined rule depending on its reliability and used it as a clue to score the interaction events. Sentence negations and the distance between two protein names were also considered. In [74], gene-gene interactions were extracted by scenarios of patterns which were constructed manually. For example, “gene product acts as a modifier of gene” is a scenario of the predicate act, which can cover a sentence such as: “Egl protein acts as a repressor of BicD”. Egl and BicD can be extracted as an argument of the predicate acts. Leroy and Chen [73] employed preposition-based parsing to generate templates. It achieved a template precision of 70% when processing the literature abstracts.

Using predefined rules can generate nice results. It is however not feasible in practical applications as it requires heavy manual processing to define patterns when shifting to another domain.

Huang et al. [75] tried to automatically construct the protein–protein interaction patterns. At first, part-of-
speech tagging was employed. Then dynamic programming to automatically extract similar patterns from sentences based on POS tags was used. Based on the automatically constructed patterns, protein–protein interactions can be identified. Their results gave precision of 80.5% and recall of 80.0%. Phuong et al. [78] used some sample sentences, which were parsed by a link grammar parser, to learn extraction rules automatically. By incorporating heuristic rules based on morphological clues and domain specific knowledge, the method can remove the interactions that are not between proteins.

2.2.1. An example

In this section, we illustrate the process of employing the rule-based method proposed in [72] to detect protein–protein interactions. The whole process can be divided into three steps:

2.2.1.1. Identification of protein names. Protein names were first identified from sentences based on a predefined biomedical entity dictionary.

2.2.1.2. Preprocessing compound or complex sentences. Sentences were firstly parsed by employing POS tagging. Then predefined rules based on the generated POS tags were applied to split those complex sentences. For example, the sentence “The gap1 mutant blocked stable association of Ste4p with the plasma membrane, and the ste18 mutant blocked stable association of Ste4p with both plasma membranes and internal membranes” is split into two parts, one is “The gap1 mutant blocked stable association of Ste4p with the plasma membrane”, the other is “the ste18 mutant blocked stable association of Ste4p with both plasma membranes and internal membranes”, when applying the rule below:

If a sentence matches the pattern P1 [(,CCDT)(,IN)][;] P2, where CC denotes coordinating conjunction and DT denotes determiner, then the sentence can be split into P1 and P2.

2.2.1.3. Recognition of the protein–protein interaction. A set of word patterns was defined for the recognition of protein–protein interactions. For example, the defined word patterns could be “A interact with B”, “interaction of A (with—and) B”, “interaction (between/among) A and B” and so on. A and B here indicate protein names. For the sentence “We define a Nab2p sequence that binds to Kap104p”, the interaction “bind: Nab2p, Kap104p” can be extracted using the predefined rule A bind to B. To process negative sentences, which describe a lack of interaction, several pattern of regular expression were constructed, such as PROTEIN1.* not (interact|associate|bind|complex).*PROTEIN2.

2.2.2. Discussion

Rule-based approaches have been found to be overall limiting in the set of interactions that can be extracted by the extent of the recognition rules that were implemented, and also by the complexity of sentences being processed. Specif-

Fig. 6. An example employing the Stanford Lexicalized Parser to generate chunk dependency parse tree.
2.3. Machine-learning and statistical approaches

Many machine-learning (ML) methods have been proposed ranging from simple methods such as deducing relationships between two terms based on their co-occurrences to complicated methods which employ NLP technologies. Approaches combining machine learning and NLP have been discussed in Section 2.1.2. Here we focus on the methods without employing NLP techniques.

A variety of machine-learning and statistical techniques based on the discovery of co-occurrence of protein names have been applied for protein–protein information extraction [79–86,8,87–91]. They can be further divided into different types based on the mining units, such as abstracts, sentences and so on.

Approaches proposed in Andrade and Valencia [79] and Marcotte et al. [85] aim to extract protein–protein interactions from a set of abstracts. Andrade and Valencia [79] used a group of relevant documents against a set of random documents to extract domain specific information such as gene functions and interactions. Marcotte et al. [85] was only interested in retrieving a large number of documents that probably contained information about protein–protein interactions. We will discuss it in detail in Section 2.3.1.

The first machine-learning sentence-based information extraction system in molecular biology was described in Craven and Kumlien [81]. They developed a Bayesian classifier which, given a sentence containing mentions of two items of interest, returns a probability that the sentence asserts some specific relations between them. Later systems have applied other technologies, including hidden Markov models and support vector machines, to identify sentences describing protein–protein interactions.

Other approaches [82–84,8] focus on a pair of proteins and detect the relations between them using probability scores. Stapley and Benoit [82] used fixed lists of gene names and detected relations between these genes by means of co-occurrences in MEDLINE abstracts. A matrix that contains distance dissimilarity measurement of every pair of genes based on their joint and individual occurrence statistics was constructed based on a user-defined threshold. Stephens et al. [83] furthered the method to discover relationships using more complicated computation on co-occurrences. Jensen et al. [84] used a similar approach to find relations between human gene clusters obtained from DNA array experiments. Donaldson et al. [8] constructed PreBIND and Textomy—an information extraction system that uses support vector machines to evaluate the importance of protein–protein interactions.

2.3.1. An example

In this section, we illustrate the process of detecting protein–protein interactions using the method proposed in [85]. The whole process can be divided into three steps.

2.3.1.1. Build the training and testing corpora. The training corpus contains 260 papers cited by the Database of Interacting Proteins (DIP). Testing data which are denoted as Yeast MEDLINE were obtained from MEDLINE by querying the PubMed using the term “Saccharomyces cerevisiae” in the title, abstract, or MESH terms.

2.3.1.2. Construct discriminating words. The discriminating words are defined as those words which may be useful for discriminating the training abstracts from other abstracts. A dictionary was constructed containing the frequencies of the 60,000 most common words used more than three times in the Yeast MEDLINE abstracts. For each word in the training abstracts, the probability $P(n|N,f)$ of finding the observed number of times n given the known dictionary frequency f and the total number of words N in the training abstracts, was calculated from the Poisson distribution as

$$P(n|N,f) \approx e^{-nf} \frac{(nf)^n}{n!}$$

In practice, the log of the probability was calculated as

$$\ln P(n|N,f) \approx -nf + n\ln nf - \ln n!.$$

The 500 words in the training abstracts with the most negative log probability scores were selected as discriminating words.

2.3.1.3. Score each abstract in Yeast MEDLINE by its likelihood of discussing protein–protein interaction. Assume that an abstract has N words, the discriminating word set D has M distinct words, n_i denotes the number of occurrences of the discriminating word d_i. At first, modeling the $P(n_i|\text{AbstractSet})$ with a Poisson distribution gives

$$P(n_i|\text{InteractionAbstract}) = \frac{e^{-f_i n_i}(f_i n_i)^{n_i}}{(n_i)!}$$

$$P(n_i|\text{NonInteractionAbstract}) = \frac{e^{-f_{ni} n_i}(f_{ni} n_i)^{n_i}}{(n_i)!}$$

where the f_i is the frequency of the discriminating word i in the training abstracts, f_{ni} is the dictionary frequency of the discriminating word i. Based on the Bayesian form, the following equation can be obtained:

$$\frac{P(\text{InactionAbstract}|n_i)}{P(\text{NonInactionAbstract}|n_i)} = \frac{e^{-f_{ni}(f_i)^{n_i}}}{e^{-f_i(f_{ni})^{n_i}}} \times \frac{P(\text{InteractionAbstract})}{P(\text{NonInteractionAbstract})}$$

The score is deduced as following:
Likehood = \prod_{i=1}^{M} \left(\frac{P(\text{InactionAbstract}|n_i)}{P(\text{NonInactionAbstract}|n_i)} \right) \\
= \prod_{i=1}^{M} \left(\frac{e^{-NfI_i(f_{i1})^{n_i}}}{e^{-NfN_i(f_{i1})^{n_i}}} \right) \\
\times \left(\frac{P(\text{InteractionAbstract})}{P(\text{NonInteractionAbstract})} \right)^M \\

As the ratio between \(P(\text{InteractionAbstract})\) and \(P(\text{NonInteractionAbstract})\) is constant, it can be omitted from the log calculation.

Score = \sum_{i=1}^{M} \left(n_i \ln \frac{f_{i1}}{f_{iN}} - N * (f_{i1} - f_{iN}) \right)

2.3.2. Discussion

Simple statistical methods such as those based on protein co-occurrence information can not precisely describe the relations between proteins and therefore tend to generate high false negative error rate. On the contrary, complex statistical models need a large amount of training data in order to reliably estimate model parameters, which is usually difficult to obtain in practical applications. Recently, the hidden vector state model (HVS) which was previously proposed for spoken language understanding has been applied to extract protein–protein interactions to strike the balance. The HVS model explores the embedded sentence structures using only lightly annotated corpus, unlike other statistical parsers which need fully annotated treebank data for training. Also the hierarchical information is embedded into the HVS model, which enable the HVS model extract the relations between proteins precisely.

2.4. Performance comparison of existing approaches

The performance of the existing protein–protein interaction extraction methods along with the data corpora they used are listed in Table 2.

As in the area of extracting information about protein–protein interactions, competitive evaluations have played important roles in pushing the fields of IE and NLP. Several evaluations have been held in recent years. BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) [93] began in 2004 and provided two common evaluation tasks to assess the state of the art methods for text mining applied to biological problems. The first task dealt with extraction of gene or protein names from text, and their mappings into standardized gene identifiers for three model organism databases (fly, mouse, yeast). The second task [94] addressed issues of functional annotation, requiring systems to identify specific text passages that supported Gene Ontology annotations for specific proteins, given full text articles. Later on, the second BioCreAtIvE challenge was held in 2006, focusing on gene mention tagging (finding the mentions of genes and proteins in sentences drawn from MEDLINE abstracts), gene normalization (producing a list of the EntrezGene identifiers for all the human genes/proteins mentioned in a collection of MEDLINE abstracts), and extraction of protein–protein interactions from text (identifying protein–protein interactions from full text papers, including extraction of excerpts from those papers that describe experimentally derived interactions). Genic Interaction Extraction Challenge [95] was associated with Learning Language in Logic Workshop (LLL05). The challenge focuses on information extraction of gene interactions in Bacillus subtilin, a model bacterium. It was reported that the best F-measure achieved with the balanced recall and precision is around 50%.

As annotated corpora are important to the development as well as the evaluation of protein–protein extraction systems, some online available annotated corpora are listed in Table 3.

3. Challenges and possible solutions

The continuing growth and diversification of the scientific literature, a prime resource for accessing worldwide scientific knowledge, will require tremendous systematic and automated efforts to utilize the underlying information. In the near future, tools for knowledge discovery will play a pivotal role in systems biology. The increasing fervor on the field of biomedical information extraction gives the evidence. IE in biomedicine has been studied for approximately ten years. Over these years, IE systems in biomedicine have grown from simple rule-based pattern matcher to sophisticated, hybrid parser employing computational linguistics technology. But, until now, there are still several severe obstacles to overcome as listed below.

- **Poor performance.** Biomedical IE methods generate poorer results compared with other domains such as newswire. In general, biomedical IE methods are scored with F-measure, with the best methods scoring about 0.85 without considering the limitation of test corpus, which is still far from users’ satisfaction. The main reason is that information from ontologies or terminologies is not well used. Until recently, most biomedical IE systems do not make use of information from ontologies or terminologies. Hence, ontologies together with terminological lexicons are prerequisites for advanced

4 Ontologies, structured lists of terms, are often used by NLP technologies to establish the semantic function of a word in a document. The simplest form of ontology is a lexicon or a list of terms that belong to a particular class. A lexicon usually consists of specialized terms and (optionally) their definitions. Another form of ontology is a thesaurus, a collection of terms and their synonyms which are of immense utility for NLP. A popular ontology in biomedicine is Gene Ontology (GO) [96,97].

3 http://biocreative.sourceforge.net/
biomedical IE. Since different ontologies are employed in different systems currently, unification seems necessary and impendable. Also, biomedical text needs to be semantically annotated and actively linked to ontologies.

- **Changeable relations between biological entities.** Relations between biological entities, such as proteins or genes are conditional and may change when the same entities are considered in a different functional context. As a consequence, every relation between entities should be linked with the functional context in which the relation was observed. Moreover, without considering the observed context, it is meaningless and impossible to make general statements whether a relation detected by the literature mining is a “yes” or a “no” relation. Obviously, to overcome this obstacle, in-depth analysis based on more elaborately constructing grammars or rules in sentence or phrase level is requisite. Hopefully, it will result in the increase of performance.

- **Gap between biologists and computational scientists.** Bridging the gap between biologists and computational scientists seems to be crucial to the success of biomedical IE. Currently, this field is dominated by researchers with computational background; however, the biomedical

Table 2

<table>
<thead>
<tr>
<th>Category</th>
<th>Recall (%)</th>
<th>Corpus</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow parsing</td>
<td>—</td>
<td>34,343 sentences from abstracts retrieved from MEDLINE using</td>
<td>[49]</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>keywords “leucine zipper”, “zinc finger”, “helix loop helix motif”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>2,565 unseen abstracts extracted from MEDLINE with the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>keywords molecular, interaction and protein for year 1,998 (560k words)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Training set consists of 500 abstracts from MEDLINE. Evaluation</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>set consists of 56 abstracts collected using search strings “protein”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>and “inhibit”</td>
<td></td>
</tr>
<tr>
<td>Deep parsing</td>
<td>48</td>
<td>492 sentences out of 250,000 abstracts on cytosine in MEDLINE</td>
<td>[52]</td>
</tr>
<tr>
<td></td>
<td>63.9</td>
<td>The test corpus consists of 100 randomly selected scientific</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>abstracts from MEDLINE</td>
<td></td>
</tr>
<tr>
<td>Rule based</td>
<td>47</td>
<td>Articles from cell containing 7790 words revealing 51 binary</td>
<td>[53]</td>
</tr>
<tr>
<td></td>
<td>86.8</td>
<td>relations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yeast, 82.5</td>
<td>3.4 million sentences from approximately 3.5 million MEDLINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.94</td>
<td>abstracts dated after 1,998 containing at least one notation of a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>human protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>229 abstracts from MEDLINE correspond to 389 interactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>from the DIP database</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.7</td>
<td>474 sentences from 50 abstracts retrieved using “E2F1”</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>80.0</td>
<td>492 sentences out of 500,000 abstracts on cytosine in MEDLINE</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>94.3</td>
<td>The test corpus consists of 100 randomly selected scientific</td>
<td>[75]</td>
</tr>
<tr>
<td></td>
<td>Yeast, 93.5</td>
<td>abstracts from MEDLINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Articles from cell containing 7790 words revealing 51 binary</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>relations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.7</td>
<td>548 MEDLINE abstracts containing any of the protein names</td>
<td>[77]</td>
</tr>
<tr>
<td></td>
<td>80.0</td>
<td>(related with cell cycle control) and Drosophila in the MESH list of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.5</td>
<td>terms</td>
<td></td>
</tr>
</tbody>
</table>

Please cite this article in press as: Zhou D, He Y, Extracting interactions between proteins from the literature, J Biomed Inform (2008), doi:10.1016/j.jbi.2007.11.008
knowledge is only possessed by biologists. That is crucial for defining standards for evaluation; for identification of specific requirements, potential applications and integrated information system for querying, visualization and analysis of data on a large scale; for experimental verification to facilitate the understanding of biological interactions. Hence, to attract more biologists into the field, it is important to design simple and friendly user interfaces that make the tools accessible to non-specialists.

- **Self-contradictory extracted knowledge.** The knowledge extracted from the literature may contradict itself under different environment, conditions, or because of author’s errors, experimental errors or other issues. Although the contradictory knowledge may occupy minor part of the whole interaction network, it is worth more attention. To handle this challenge, one way is to categorize the corpora and define the confidence value for each category. For contradictory knowledge, the decision can be made based on these confidence values. The solution can also be applied to handling different parts of an article, such as the abstract, introduction, references and so on, which obviously are of different confidences.

- **Obstacles in NLP.** Some problems exist not only in the field of biomedical IE, but also in the field of NLP. Two of them are: (1) Dealing with negative sentences, which constitutes a well-known problem in language understanding [98]. (2) Resolving coreferences, the recognition of implicit information in a number of sentences may contain key information, e.g. protein names, that later are used implicitly in other sentences. Results in LLL challenge 05 show that F-measure can only achieve 25% when considering coreferences.

- **Development of gold standard for evaluation systems.** The development of the gold standard for evaluation systems is still under way, far from maturity, which requires more concerted efforts. The experience in the newswire domain shows that the construction of evaluation benchmarks in the face of common challenges contributed greatly to the rapid development of IE. Thus it is crucial to attach importance to evaluate systems development in biomedicine. Also, efforts will be required to focus on linking the knowledge in the databases with text sources available. It is believed that in the future, biomedical IE might provide new approaches for relation discovery that exploit efficiently indirect relationships derived from bibliographic analysis of entities contained in biological databases.

References

Please cite this article in press as: Zhou D, He Y, Extracting interactions between proteins from the literature, J Biomed Inform (2008), doi:10.1016/j.jbi.2007.11.008
for the extraction of molecular pathways from journal articles. Bioinformatics 2001;17:574–82.